推广 热搜: page  关键词  数据分析  服务  数据分析系统  搜索  获取  小红  哪些  链接 

数据仓库:详解维度建模之事实表

   日期:2024-12-17     作者:vhljw    caijiyuan   评论:0    移动:https://sicmodule.kub2b.com/mobile/news/9073.html
核心提示:本文目录如下:一、事实表基础二、事实表设计规则三、事实表设计方法四、有事实的事实表五、无事实的事实表六、聚集型事实表正文

本文目录如下:

一、事实表基础 二、事实表设计规则 三、事实表设计方法 四、有事实的事实表 五、无事实的事实表 六、聚集型事实表

正文开始:

每个数据仓库都包含一个或者多个事实数据表。其中可能包含业务销售数据,如现金登记事务所产生的数据,通常包含大量的行。事实数据表的主要特点是包含数字数据(事实),并且这些数字信息可以汇总,以提供有关单位作为历史的数据,每个事实数据表包含一个由多个部分组成的索引,该索引包含作为外键的相关性维度表的主键,而维度表包含事实记录的特性。

1. 事实表特征

事实表作为数仓维度建模的核心,紧紧围绕着业务过程来设计,通过获取描述业务过程的度量来表达业务过程,包含了引用的维度和业务过程有关的度量。事实表中一条记录所表达的业务细节程度被称为粒度(业务中的细节程度)。通常粒度可以通过两种方式来表达:一种是维度属性组合所表示的细节程度,另一种是所表示的具体业务含义。

作为度量业务过程的事实(事实表属性),一般为整型或浮点型的十进制数值,有可加性、半可加性和不可加性三种类型:

2. 有事实的事实表

有事实表分为三种类型 :事务事实表周期快照事实表累积快照事实表

3. 无事实的事实表

无事实的事实表可以用来跟踪事件的发生。例如,在给定的某一天中发生的学生参加课程的事件,可能没有可记录的数字化事实,但该事实行带有一个包含日期、学生、教师、地点、课程等定义良好的外键。利用无事实的事实表可以按各种维度计数上课这个事件。

Kimball的四步维度建模方法:选择业务过程、声明粒度、确定维度、确定事实。

Step 1:选择业务过程及确定事实表类型。

在明确了业务需求以后,接下来需要进行详细的需求分析,对业务的整个生命周期进行分析,明确关键的业务步骤,从而选择与需求有关的业务过程。(业务过程通常使用行为动词表示业务执行的活动)

Step 2:声明粒度。

粒度的声明是事实表建模非常重要的一步,意味着精确定义事实表的每一行所表示的业务含义,粒度传递的是与事实表度量有关的细节层次。明确的粒度能确保对事实表中行的意思的理解不会产生混淆,保证所有的事实按照同样的细节层次记录。

Step 3:确定维度。

完成粒度声明以后,也就意味着确定了主键,对应的维度组合以及相关的维度字段就可以确定了,应该选择能够描述清楚业务过程所处的环境的维度信息。

Step 4:确定事实。

事实可以通过回答“过程的度量是什么”来确定。应该选择与业务过程有关的所有事实,且事实的粒度要与所声明的事实表的粒度一致。事实有可加性、半可加性、非可加性三种类型 , 需要将不可加性事实分解为可加的组件。

Step 5:冗余维度。

冗余维度是在kimball维度建模方法基础上新增的步骤。主要是因为在大数据的事实表模型设计中,需要考虑更多的是提高下游用户的使用效率,降低数据获取的复杂性,减少关联的表数量。所以通常事实表中会冗余方便下游用户使用的常用维度,以实现对事实表的过滤查询、控制聚合层次、排序数据以及定义主从关系等操作。

有事实表分为三种类型 :事务事实表周期快照事实表累积快照事实表

1. 事务事实表

针对于每个业务过程设计一个事实表,方便每个业务过程进行独立分析研究。

优点:更方便跟踪业务流程细节数据,针对特殊的业务分析场景比较方便和灵活,数据处理上也更加灵活;

弊端:数仓中需要管理太多的事实表,同时跟踪业务流转不够直观

多事务事实表,将不同的事实放到同一个事实表中,即同一个事实表包含不同的业务过程。多事务事实表在设计时有两种方法进行事实的处理:

一是不同业务过程的事实使用不同的事实字段进行存放:

二是不同业务过程的事实使用同一个事实字段进行存放,但增加一个业务过程标签。

优点:能够更直观的跟踪业务流转和当前状态,流程事实集中,方便大部分的通用分析应用场景,由于和业务侧的数据模型设计思路一致,也是目前最常用的事实表设计;

弊端:细节数据跟踪不到位,特殊场景的分析不够灵活;

两种表的设计区别在于对业务流程的拆分思路不同,具体选择事实表的构建思路,需要根据实际的业务确定,一般建议两者结合

父子事实的处理方式:

通过分摊父订单的金额将所有业务过程的度量全部带进淘宝交易事务事实表中,包括下单数量、商品价格、子订单折扣、下单分摊比例、父订单支付金额、父订单支付邮费、父订单折扣、子订单下单金额、子订单下单有效金额、支付分摊比例、子订单支付金额等,将父子事实同时冗余到事务表中。

设计准则:

2. 周期快照事实表

快照事实表在确定的问隔内对实体的度量进行抽样,这样可以很容易地研究实体的度量值,而不需要聚集长期 的事务历史。

特征:

设计实例:

3. 累计快照事实表

对于类似于研究事件之间时间间隔的需求,采用累计快照事实表可以很好地解决。

如在统计买家下单到支付的时长、买家支付到卖家发货的时长等,事务事实表很难满足,需要用到累计快照事实表。

特征:

特殊处理:

在维度模型中,事实表用事实来度量业务过程,不包含事实或度量的事实表称为无事实的事实表。虽然没有明确的事实,但可以用来支持业务过程的度量。常见的无事实的事实表主要有如下两种:第一种是事件类的,记录事件的发生。

如阿里巴巴数据仓库中,最常见的是日志类事实表。

第二种是条件、范围或资格类的,记录维度与维度多对多之 间的关系。

如客户和销售人员的分配情况、产品的促销范围等。

数据仓库的性能是数据仓库建设是否成功的重要标准之一。聚集主要是通过汇总明细粒度数据来获得改进查询性能的效果。通过访问聚集数据,可以减少数据库在响应查询时必须执行的工作量,能够快速响应用户的查询,同时有利于减少不同用户访问明细数据带来的结果不一致问题。如阿里巴巴将使用频繁的公用数据,通过聚集进行沉淀,比如卖家最近 l 天的交易汇总表、卖家最近 N 天的交易汇总表、卖家自然年交易汇总表等。这类聚集汇总数据,被叫作公共汇总层

相对于明细事实表,聚合事实表通常是在明细事实表的基础上,按照一定的粒度粗细进行的汇总、聚合操作,它的粒度较明细数据粒度粗,同时伴随着细节信息的丢失;在数仓层次结构中,通常位于dws层,一般作为通用汇总数据存在,也可以是更高粒度的指标数据。

1. 基本原则

2. 基本步骤

Step 1:确定聚集维度。Step 2:确定一致性上钻。Step 3:确定聚集事实。

常见聚集型事实表

数据仓库中,按照日期范围的不同,通常包括以下类别的聚集事实表

公共维度层-通用汇总

应对大部分可预期的、常规的数据需求,通常针对模式相对稳定的分析、BI指标计算、特征提取等场景,封装部分业务处理、计算逻辑,尽量避免用户直接使用底层明细数据,该层用到的数据范围比较广泛。

日粒度

主要应对模式稳定的分析、BI日报、特征提取场景,同时日粒度也为后续累积计算提供粗粒度的底层,数据范围一般为上一日的数据 。

周期性累积

主要应对明确的周期性分析、BI周期性报表,数据范围一般在某周期内的。

历史累积

顾名思义,历史以来某一特定数据的累积,通常在用户画像、经营分析、特征提取方面场景较多,设计数据范围比较广泛,通常是计算耗时较长的一部分,比如某门店累积营业额、某用户累积利润贡献、用户首次下单时间(非可度量、描述性)。

3. 聚集补充说明

本文地址:https://sicmodule.kub2b.com/news/9073.html     企库往 https://sicmodule.kub2b.com/ , 查看更多

特别提示:本信息由相关用户自行提供,真实性未证实,仅供参考。请谨慎采用,风险自负。

 
 
更多>同类最新资讯
0相关评论

文章列表
相关文章
最新动态
推荐图文
最新资讯
点击排行
网站首页  |  关于我们  |  联系方式  |  使用协议  |  版权隐私  |  网站地图  |  排名推广  |  广告服务  |  积分换礼  |  网站留言  |  RSS订阅  |  违规举报  |  鄂ICP备2020018471号