推广 热搜: page  关键词  数据分析  服务  获取  哪些  链接  数据分析系统  搜索  小红 

【ELM回归预测】基于鲸鱼算法优化极限学习机WOA-ELM实现数据回归预测附matlab代码 多变量输入模型

   日期:2024-12-17     作者:f2jed    caijiyuan   评论:0    移动:https://sicmodule.kub2b.com/mobile/news/8909.html
核心提示: ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进

代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

在机器学习领域,回归预测是一项重要的任务,它可以帮助我们预测未来的趋势和结果。极限学习机(ELM)是一种快速而有效的机器学习算法,它在回归预测任务中表现出色。然而,为了进一步提高其性能,我们可以结合鲸鱼算法(WOA)进行优化,从而实现更准确的数据回归预测。

鲸鱼算法是一种基于自然界鲸鱼觅食行为的优化算法,它模拟了鲸鱼在寻找食物时的行为,通过调整自身位置来寻找最优解。结合鲸鱼算法和极限学习机,可以有效地优化ELM模型的权重和偏置,从而提高回归预测的准确性和稳定性。

为了实现基于鲸鱼算法优化极限学习机的数据回归预测,我们可以按照以下步骤进行

【ELM回归预测】基于鲸鱼算法优化极限学习机WOA-ELM实现数据回归预测附matlab代码 多变量输入模型

  1. 数据准备:首先,我们需要准备回归预测所需的数据集,包括输入特征和对应的输出标签。确保数据集的质量和完整性对于模型的训练和预测至关重要。

  2. 极限学习机模型:接下来,我们需要构建极限学习机模型,包括输入层、隐藏层和输出层。ELM模型的随机初始化权重和偏置将在后续的优化过程中进行调整。

  3. 鲸鱼算法优化:将鲸鱼算法应用于极限学习机模型中,通过迭代调整权重和偏置,使模型逐渐收敛到最优解。鲸鱼算法的搜索策略和更新机制将帮助我们找到更优秀的模型参数。

  4. 模型训练和预测:经过鲸鱼算法优化的极限学习机模型将进行训练,并用于回归预测任务。通过验证集和测试集的评估,我们可以评估模型的性能和泛化能力。

通过以上步骤,我们可以实现基于鲸鱼算法优化极限学习机的数据回归预测。这种方法不仅可以提高模型的准确性和稳定性,还可以加快模型的收敛速度,节省计算资源和时间成本。

总的来说,基于鲸鱼算法优化极限学习机的数据回归预测是一种有效的方法,它结合了两种优秀的机器学习技术,为回归预测任务带来了新的可能性和突破。在未来的研究和应用中,我们可以进一步探索和优化这种方法,以满足不同领域和场景的需求。希望这种方法能够为数据科学家和机器学习工程师提供新的思路和启发,推动机器学习技术的发展和应用。

 
 

[1]  Zhang K , Zhang Y , Zhang G ,et al.A novel hybrid model based on ESMD-PE and mRMR-LSTM-Adaboost for short-term wind power prediction[J].AIP Advances, 2021, 11(12):-.

[2] 林绪骞.基于鲸鱼算法优化ELM的新疆铁路网规模预测[J].现代科学仪器, 2019(2):5.

[3] 周孟然,凌胜,来文豪,等.基于黏菌优化极限学习机的煤矸石多光谱识别[J].[2023-12-16].

[4] 田宏伟,李志鹏,王煜伟,等.CEEMDAN-WOA-ELM模型风机振动趋势预测[J].中国测试, 2020, 46(7):7.DOI:10.11857/j.issn.1674-5124.2019100074.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码、论文复现、期刊合作、论文辅导及科研仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

本文地址:https://sicmodule.kub2b.com/news/8909.html     企库往 https://sicmodule.kub2b.com/ , 查看更多

特别提示:本信息由相关用户自行提供,真实性未证实,仅供参考。请谨慎采用,风险自负。

 
 
更多>同类最新资讯
0相关评论

文章列表
相关文章
最新动态
推荐图文
最新资讯
点击排行
网站首页  |  关于我们  |  联系方式  |  使用协议  |  版权隐私  |  网站地图  |  排名推广  |  广告服务  |  积分换礼  |  网站留言  |  RSS订阅  |  违规举报  |  鄂ICP备2020018471号