推广 热搜: page  关键词  数据分析  服务  哪些  数据分析系统  搜索  获取  小红  链接 

Hive窗口函数详解与应用实例

   日期:2024-12-26     作者:zk5k7    caijiyuan   评论:0    移动:https://sicmodule.kub2b.com/mobile/news/10386.html
核心提示:在SQL中有一类函数叫做聚合函数,例如sum()、avg()、max()等等,这类函数可以将多行数据按照规则聚集为一行,

在SQL中有一类函数叫做聚合函数,例如sum()、avg()、max()等等,这类函数可以将多行数据按照规则聚集为一行,一般来讲聚集后的行数是要少于聚集前的行数的。但是有时我们想要既显示聚集前的数据,又要显示聚集后的数据,这时我们便引入了窗口函数。窗口函数又叫OLAP函数/分析函数,窗口函数兼具分组和排序功能。

本文分为两部分
第一部分是Hive窗口函数详解,剖析各种窗口函数(几乎涵盖Hive所有的窗口函数
第二部分是窗口函数实际应用,这部分总共有五个例子,都是工作常用、面试必问的非常经典的例子。

窗口函数最重要的关键字是 partition by 和 order by

具体语法如下XXX over (partition by xxx order by xxx)

特别注意:over()里面的 partition by 和 order by 都不是必选,over()里面可以只有partition by,也可以只有order by,也可以两个都没有,大家需根据需求灵活运用。

窗口函数我划分了几个大类,我们一类一类的讲解。

1. SUM、AVG、MIN、MAX

讲解这几个窗口函数前,先创建一个表,以实际例子讲解大家更容易理解。

首先创建用户访问页面表

 

给上面这个表加上如下数据

 

  • SUM()使用

执行如下查询语句

 

 

执行如下查询语句

 
 

第一条SQL的over()里面加 order by ,第二条SQL没加order by ,结果差别很大

所以要注意了

  • over()里面加 order by 表示:分组内从起点到当前行的pv累积,如,11号的pv1=10号的pv+11号的pv, 12号=10号+11号+12号

  • over()里面不加 order by 表示:将分组内所有值累加。

AVG,MIN,MAX,和SUM用法一样,这里就不展开讲了,但是要注意 AVG,MIN,MAX 的over()里面加不加 order by 也和SUM一样,如 AVG 求平均值,如果加上 order by,表示分组内从起点到当前行的平局值,不是全部的平局值。MIN,MAX 同理。

2. ROW_NUMBER、RANK、DENSE_RANK、NTILE

还是用上述的用户登录日志表,里面的数据换成如下所示

 

  • ROW_NUMBER()使用

ROW_NUMBER()从1开始,按照顺序,生成分组内记录的序列。

 
 

  • RANK 和 DENSE_RANK 使用

RANK() 生成数据项在分组中的排名,排名相等会在名次中留下空位。

DENSE_RANK()生成数据项在分组中的排名,排名相等会在名次中不会留下空位。

 
 

  • NTILE的使用

有时会有这样的需求:如果数据排序后分为三部分,业务人员只关心其中的一部分,如何将这中间的三分之一数据拿出来呢?NTILE函数即可以满足。

ntile可以看成是:把有序的数据集合平均分配到指定的数量(num)个桶中, 将桶号分配给每一行。如果不能平均分配,则优先分配较小编号的桶,并且各个桶中能放的行数最多相差1。

然后可以根据桶号,选取前或后 n分之几的数据。数据会完整展示出来,只是给相应的数据打标签;具体要取几分之几的数据,需要再嵌套一层根据标签取出。

 
 

3. LAG、LEAD、FIRST_VALUE、LAST_VALUE

讲解这几个窗口函数时还是以实例讲解,首先创建用户访问页面表

 

表中加入如下数据

 

  • LAG的使用

LAG(col,n,DEFAULT) 用于统计窗口内往上第n行值。

第一个参数为列名,第二个参数为往上第n行(可选,默认为1,第三个参数为默认值(当往上第n行为NULL时候,取默认值,如不指定,则为NULL

 
 

解释

 

  • LEAD的使用

与LAG相反

LEAD(col,n,DEFAULT) 用于统计窗口内往下第n行值。

第一个参数为列名,第二个参数为往下第n行(可选,默认为1,第三个参数为默认值(当往下第n行为NULL时候,取默认值,如不指定,则为NULL

 
 

  • FIRST_VALUE的使用

取分组内排序后,截止到当前行,第一个值。

 
 

  • LAST_VALUE的使用

取分组内排序后,截止到当前行,最后一个值。

 
 

如果想要取分组内排序后最后一个值,则需要变通一下

 

注意上述SQL,使用的是 FIRST_VALUE 的倒序取出分组内排序最后一个值

此处要特别注意order  by

如果不指定ORDER BY,则进行排序混乱,会出现错误的结果

 
 

上述 url2 和 url55 的createtime即不属于最靠前的时间也不属于最靠后的时间,所以结果是混乱的。

4. CUME_DIST

先创建一张员工薪水表

 

表中加入如下数据

 

  • CUME_DIST的使用

此函数的结果和order by的排序顺序有关系。

CUME_DIST:小于等于当前值的行数/分组内总行数。  order默认顺序 :正序

比如,统计小于等于当前薪水的人数,所占总人数的比例。

 
 

解释

 

5. GROUPING SETS、GROUPING__ID、CUBE、ROLLUP

这几个分析函数通常用于OLAP中,不能累加,而且需要根据不同维度上钻和下钻的指标统计,比如,分小时、天、月的UV数。

还是先创建一个用户访问表

 

表中加入如下数据

 

  • GROUPING SETS的使用

Hive窗口函数详解与应用实例

grouping sets是一种将多个group by 逻辑写在一个sql语句中的便利写法。

等价于将不同维度的GROUP BY结果集进行UNIOn ALL。

 

:上述SQL中的GROUPING__ID,是个关键字,表示结果属于哪一个分组集合,根据grouping sets中的分组条件month,day,1是代表month,2是代表day。

上述SQL等价于

 

  • CUBE的使用

根据GROUP BY的维度的所有组合进行聚合。

 
 

上述SQL等价于

 

  • ROLLUP的使用

是CUBE的子集,以最左侧的维度为主,从该维度进行层级聚合。

比如,以month维度进行层级聚合

 
 

把month和day调换顺序,则以day维度进行层级聚合

 

结果如下

这里,根据日和月进行聚合,和根据日聚合结果一样,因为有父子关系,如果是其他维度组合的话,就会不一样。

 

1. 第二高的薪水

难度简单。

编写一个 SQL 查询,获取 Employee 表中第二高的薪水(Salary)。

 

例如上述 Employee 表,SQL查询应该返回 200 作为第二高的薪水。如果不存在第二高的薪水,那么查询应返回 null。

 

这道题可以用 row_number 函数解决。

参考代码

 

更简单的代码

 

OFFSET:偏移量,表示从第几条数据开始取,0代表第1条数据。

2. 分数排名

难度简单。

编写一个 SQL 查询来实现分数排名。

如果两个分数相同,则两个分数排名(Rank)相同。请注意,平分后的下一个名次应该是下一个连续的整数值。换句话说,名次之间不应该有“间隔”。

 

例如,根据上述给定的 Scores 表,你的查询应该返回(按分数从高到低排列

 

参考代码

 

3. 连续出现的数字

难度中等。

编写一个 SQL 查询,查找所有至少连续出现三次的数字。

 

例如,给定上面的 Logs 表, 1 是唯一连续出现至少三次的数字。

 

参考代码

 

4. 连续N天登录

难度困难。

写一个 SQL 查询,  找到活跃用户的 id 和 name,活跃用户是指那些至少连续 5 天登录账户的用户,返回的结果表按照 id 排序。

表 Accounts

 

表 Logins

 

例如,给定上面的Accounts和Logins表,至少连续 5 天登录账户的是id=7的用户

 

思路

  1. 去重:由于每个人可能一天可能不止登陆一次,需要去重

  2. 排序:对每个ID的登录日期排序

  3. 差值:计算登录日期与排序之间的差值,找到连续登陆的记录

  4. 连续登录天数计算:select id, count(*) group by id, 差值(伪代码

  5. 取出登录5天以上的记录

  6. 通过表合并,取出id对应用户名

参考代码

 

注意点

  1. DATE_SUB的应用:DATE_SUB (DATE, X),注意,X为正数表示当前日期的前X天

  2. 如何找连续日期:通过排序与登录日期之间的差值,因为排序连续,因此若登录日期连续,则差值一致

  3. GROUP BY和HAVINg的应用:通过id和差值的GROUP BY,用COUNT找到连续天数大于5天的id,注意COUNT不是一定要出现在SELECT后,可以直接用在HAVINg中

5. 给定数字的频率查询中位数

难度困难。

Numbers 表保存数字的值及其频率。

 

在此表中,数字为 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 2, 3,所以中位数是 (0 + 0) / 2 = 0。

 

请编写一个查询来查找所有数字的中位数并将结果命名为 median 。

参考代码

本文地址:https://sicmodule.kub2b.com/news/10386.html     企库往 https://sicmodule.kub2b.com/ , 查看更多

特别提示:本信息由相关用户自行提供,真实性未证实,仅供参考。请谨慎采用,风险自负。

 
 
更多>同类最新资讯
0相关评论

文章列表
相关文章
最新动态
推荐图文
最新资讯
点击排行
网站首页  |  关于我们  |  联系方式  |  使用协议  |  版权隐私  |  网站地图  |  排名推广  |  广告服务  |  积分换礼  |  网站留言  |  RSS订阅  |  违规举报  |  鄂ICP备2020018471号