上文提到的机器学习,那么什么事机器学习呢?
机器学习是人工智能的一个重要分支,它关注如何设计和开发算法和模型,使计算机能够从数据中学习,改进其性能和执行任务,而不需要明确的编程指导。在AI中,机器学习是实现智能行为和决策的关键技术之一。
主要有以下特征:
机器学习算法分为多个类别,包括监督学习、无监督学习、半监督学习和强化学习。我们通过监督学习中K最近邻算法 (K-Nearest Neighbors, KNN)来了解机器学习 KNN邻近算法概要: 目的:确定测试样本属于哪一类 方式:寻找所有训练样本中与该测试样本“距离”最近的前K个样本,然后看这K个样本大部分属于哪一类,那么就认为这个测试样本也属于哪一类。
KNN算法判定 个体体重是否正常
2. 输出sklearn库中的iris数据集
输出:总有150条数据集,类别有:0(狗尾草鸢尾),1(杂色鸢尾),2(弗吉尼亚鸢尾) 每个类别50条
通过花萼长度,花萼宽度区分出特征
当涉及到投资管理算法的学习和开发,以下是一些开源库,它们提供了强大的工具和资源:
chatGPT 无疑是现在生成式AI中焦点,那么在程序开发中如何提高效率呢?
由于chatGPT 不支持中国地区,需要使用 “小飞机”切换网络节点到国外比如:美国节点
输入:生成个node 函数,输入文件路径,输出包括改文件内所有文件的size
chatgpt 输出的代码:
这时候再要求上述功能输出python的写法
chatGPT输出:
输入要求chatgpt记录一段 “template 1” 代码:
输入"sources"要求chatgpt按照"template 1" 生成代码:
chatGPT极大提高了开发人员的效率。
昨天举办的首届OpenAI开发者大会发表了GPT-4 Turbo, 自定义chatGPT, GPT Store,和更低的api调用费用能耗等,能看出来chatGPT在加速了商业化和大众化
感兴趣的小伙伴,赠送全套Python学习资料,包含面试题、简历资料等具体看下方。
👉CSDN大礼包🎁:全网最全《Python学习资料》免费赠送🆓!(安全链接,放心点击)
一、Python所有方向的学习路线
Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。
二、Python必备开发工具
三、最新Python学习笔记
当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
四、Python视频合集
观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
五、实战案例
纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
六、面试宝典