推广 热搜: page  关键词  数据分析  服务  获取  哪些  链接  数据分析系统  搜索  小红 

【CV论文阅读】Deep Linear Discriminative Analysis, ICLR, 2016

   日期:2024-12-16     作者:yzre7    caijiyuan   评论:0    移动:https://sicmodule.kub2b.com/mobile/news/8366.html
核心提示:DeepLDA 并不是把LDA模型整合到了Deep Network,而是利用LDA来指导模型的训练。从实验结果来看,使用DeepLDA模型最

DeepLDA 并不是把LDA模型整合到了Deep Network,而是利用LDA来指导模型的训练。从实验结果来看,使用DeepLDA模型最后投影的特征也是很discriminative 的,但是很遗憾没有看到论文是否验证了topmost 的hidden representation 是否也和softmax指导产生的representation一样的discriminative。

DeepLDA和一般的deep network唯一不同是它的loss function。两者对比如下

 事实上,特征向量指示着投影最大方差的方向,特征值则是对特征向量重要程度的一个量化。而论文的一个insight就是,希望可以指导网络生成topmost的representation能够在各个方向都产生较大的特征值,即不希望投影的方向在某个方向更方差会更大,因为这代表了信息量的多少。论文提出一种直接把特征值作为loss function的方法,因为训练的时候,网络倾向于优化最大的特征值,产生一个trivial的结果,即使得大的特征值会倾向于更大而牺牲其他小的特征值。因此论文定义loss function在小的特征值上

论文的appendix可以看到完整的求导过程。

 

【CV论文阅读】Deep Linear Discriminative Analysis, ICLR, 2016

最后,论文的实验室通过对project后的特征进行分类,所以比较的是分类的精度,以及test error。而且,实验的结果还挺competitive的。

 

 

本文地址:https://sicmodule.kub2b.com/news/8366.html     企库往 https://sicmodule.kub2b.com/ , 查看更多

特别提示:本信息由相关用户自行提供,真实性未证实,仅供参考。请谨慎采用,风险自负。

 
 
更多>同类最新资讯
0相关评论

文章列表
相关文章
最新动态
推荐图文
最新资讯
点击排行
网站首页  |  关于我们  |  联系方式  |  使用协议  |  版权隐私  |  网站地图  |  排名推广  |  广告服务  |  积分换礼  |  网站留言  |  RSS订阅  |  违规举报  |  鄂ICP备2020018471号