生成式AI系统(Generative AI)是指一类人工智能系统,它们可以通过学习现有的数据并生成新的数据,从而实现类似人类创造力的功能。与传统的AI系统不同,生成式AI系统能够自己创造出新的内容,而不是只能根据输入的数据进行处理和分类。
生成式AI系统可以基于各种技术实现,包括深度学习、GAN(Generative Adversarial Networks)等。深度学习可以通过训练神经网络,从而学习输入数据的特征和规律,并根据这些规律生成新的数据。GAN则通过两个神经网络进行博弈,一个生成器网络负责生成新的数据,一个判别器网络负责判断生成的数据是否真实,从而促使生成器网络不断改进生成质量。
生成式AI系统已经在多个领域得到了广泛应用,例如音乐生成、图像生成、文本生成等。这些应用使得人们可以快速地生成大量的创意内容,并为创意产业的发展带来新的机遇和挑战。同时,生成式AI系统也存在着一些问题和挑战,例如数据来源、数据隐私、版权等问题,需要进一步探索和解决。
!pip install keras tensorflow
然后,可以使用以下代码加载数据集、创建模型并进行训练和测试:
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Flatten
from keras.utils import to_categorical
# 加载数据集
(x_train, y_train), (x_test, y_test) = mnist.load_data()
# 数据预处理
x_train = x_train.reshape(x_train.shape[0], 28 * 28).astype('float32') / 255
x_test = x_test.reshape(x_test.shape[0], 28 * 28).astype('float32') / 255
y_train = to_categorical(y_train, 10)
y_test = to_categorical(y_test, 10)
# 创建模型
model = Sequential()
model.add(Dense(256, activation='relu', input_shape=(28 * 28,)))
model.add(Dense(128, activation='relu'))
model.add(Dense(10, activation='softmax'))
# 编译模型
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
# 训练模型
model.fit(x_train, y_train, batch_size=128, epochs=10, validation_data=(x_test, y_test))
# 测试模型
test_loss, test_acc = model.evaluate(x_test, y_test)
print('Test accuracy:', test_acc)
!pip install keras tensorflow
然后,可以使用以下代码生成一个简单的时间序列数据集,并将其转换为模型所需的格式:
import numpy as np
# 生成时间序列数据集
def generate_data(n):
x = np.random.random((n, 1))
y = np.sin(x)
return x, y
# 将数据转换为模型所需的格式
def create_dataset(x, y, look_back=1):
data_x, data_y = [], []
for i in range(len(x)-look_back):
data_x.append(y[i:(i+look_back), 0])
data_y.append(y[i+look_back, 0])
return np.array(data_x), np.array(data_y)
# 生成数据集
x, y = generate_data(1000)
# 将数据转换为模型所需的格式
look_back = 10
train_x, train_y = create_dataset(x, y, look_back=look_back)
# 将数据集调整为符合 Keras 的输入要求
train_x = np.reshape(train_x, (train_x.shape[0], train_x.shape[1], 1))
train_y = np.reshape(train_y, (train_y.shape[0], 1))
from keras.models import Sequential
from keras.layers import LSTM, Dense
# 创建模型
model = Sequential()
model.add(LSTM(64, input_shape=(look_back, 1)))
model.add(Dense(1))
# 编译模型
model.compile(loss='mean_squared_error', optimizer='adam')
# 训练模型
model.fit(train_x, train_y, epochs=100, batch_size=32, verbose=2)
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Reshape, Flatten
from keras.layers.advanced_activations import LeakyReLU
from keras.optimizers import Adam
import numpy as np
import matplotlib.pyplot as plt
# 定义生成器模型
def build_generator():
generator = Sequential()
generator.add(Dense(256, input_dim=100))
generator.add(LeakyReLU(alpha=0.2))
generator.add(Dense(512))
generator.add(LeakyReLU(alpha=0.2))
generator.add(Dense(784, activation='tanh'))
generator.add(Reshape((28, 28, 1)))
return generator
# 定义判别器模型
def build_discriminator():
discriminator = Sequential()
discriminator.add(Flatten(input_shape=(28, 28, 1)))
discriminator.add(Dense(512))
discriminator.add(LeakyReLU(alpha=0.2))
discriminator.add(Dense(256))
discriminator.add(LeakyReLU(alpha=0.2))
discriminator.add(Dense(1, activation='sigmoid'))
return discriminator
# 定义GAN模型
def build_gan(generator, discriminator):
discriminator.trainable = False
gan = Sequential()
gan.add(generator)
gan.add(discriminator)
return gan
# 加载MNIST数据集
(x_train, y_train), (_, _) = mnist.load_data()
x_train = x_train / 127.5 - 1.0
x_train = np.expand_dims(x_train, axis=3)
# 构建生成器和判别器模型
generator = build_generator()
discriminator = build_discriminator()
# 编译判别器模型
discriminator.compile(loss='binary_crossentropy', optimizer=Adam(lr=0.0002, beta_1=0.5), metrics=['accuracy'])
# 构建GAN模型
gan = build_gan(generator, discriminator
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
# 加载数据集
(x_train, _), (x_test, _) = tf.keras.datasets.mnist.load_data()
# 归一化
x_train = x_train / 255.0
x_test = x_test / 255.0
# 定义自编码器模型
input_shape = (28, 28, 1)
encoder_input = tf.keras.layers.Input(shape=input_shape)
encoder = tf.keras.layers.Flatten()(encoder_input)
encoder = tf.keras.layers.Dense(units=64, activation='relu')(encoder)
encoder = tf.keras.layers.Dense(units=32, activation='relu')(encoder)
encoder_output = tf.keras.layers.Dense(units=16, activation='relu')(encoder)
decoder_input = tf.keras.layers.Input(shape=(16,))
decoder = tf.keras.layers.Dense(units=32, activation='relu')(decoder_input)
decoder = tf.keras.layers.Dense(units=64, activation='relu')(decoder)
decoder = tf.keras.layers.Dense(units=784, activation='sigmoid')(decoder)
decoder_output = tf.keras.layers.Reshape(input_shape)(decoder)
autoencoder = tf.keras.models.Model(inputs=encoder_input, outputs=decoder_output)
autoencoder.compile(optimizer='adam', loss='binary_crossentropy')
# 训练模型
autoencoder.fit(x_train, x_train, epochs=10, batch_size=128, validation_data=(x_test, x_test))
# 使用自编码器压缩图像
encoder_model = tf.keras.models.Model(inputs=encoder_input, outputs=encoder_output)
encoded_images = encoder_model.predict(x_test)
# 显示原始图像和压缩后的图像
n = 10
plt.figure(figsize=(20, 4))
for i in range(n):
# 显示原始图像
ax = plt.subplot(2, n, i + 1)
plt.imshow(x_test[i].reshape(28, 28))
plt.gray()
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
# 显示压缩后的图像
ax = plt.subplot(2, n, i + 1 + n)
plt.imshow(encoded_images[i].reshape(4, 4))
plt.gray()
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
plt.show()