推广 热搜: page  数据  小红  红书  考试  论文  数据分析  关键词  哪些  搜索 

AI在人才测评领域的应用情况概述

   日期:2025-01-01     移动:https://sicmodule.kub2b.com/mobile/quote/17567.html

按照百度百科的释义,人工智能是

  • 传统建模:麦克利兰为代表的基于访谈、调研、战略演绎等多综合手段的传统建模
  • 卡片建模:罗明格为代表以咨询公司能力卡片为基础的建模研讨形式筛选能力项,建模敏捷性、适用性更强

卡片建模的源头是在哪里?这个我确实没有找到权威的说法,只是知晓罗明格是这一方法模式的典型代表。通俗来讲,卡片建模就是原先麦克利兰提出的访谈、调研、萃取、分析等过程实在太漫长了,那么精细化搞出来的东西,可能用的时候市场环境、企业模式已经变化很多了。因为很多行业比如制造业的组织、岗位运作模式很成熟,大同小异,倒不如构建一个大体使用的指标库,在应用到具体企业时候,开个研讨会,让企业HR或相关人员进行挑选,重新组合一下,适应于本企业,这样投入少、见效快,后面也可以随时调整。‘

那么AI在这块的后续应用是怎样的?笔者认为是智能化建模方向,因为:

  • (1)模型定义、指标、行为等级的描述、要求相对结构化,能够通过语义分析的算法进行语料的生成与组合
  • (2)访谈、调研获取的资料可作为语料库进行储存与分析
  • (3)在以上两个条件满足条件下,结合自然语言处理等方式,可以形成粗框架下的胜任能力模型

这种思路目前为止,至少在笔者去搜索资料,没有发现完整的成熟落地的技术路线和产品化工具,但是也有少数利用算法和智能化编码的技术对现有建模的局限进行改进的思路。在国内文献资料库里查到两篇文章:

  • 《基于模糊集定性比较分析方法改进胜任力建模》
  • 《胜任力建模过程中智能化编码研究》

如果有读者有这方面更深入的研究和技术参考,可在评论区留言,提醒作者进行拓展学习

人才画像这个概念在人才管理领域似乎是一个特别容易引起HR感兴趣的一个概念,但是传统HR的套路基本上是围绕冰山模型的拓展展开的,所谓的画像就是把人的冰山上、冰山下的东西标签化、结构化,以及可量化。这就是它的全部,和传统任职资格、能力模型不一样的地方可能就在于“打标签”吧。如果从技术视角去考虑人才画像的概念,本身画像玩的非常溜的地方是在互联网,用户画像形成了一整套的方法论和技术模型。

打标签当然是画像的关键问题,与大家理解的所谓人才画像人工打标或者简单规则打标不同的是,用户画像的标签是一个系列方法,可区分为统计类、规则类、挖掘类等等各方面的类型,挖掘类的标签就用到了很多像特征提取、文本分词、贝叶斯分类等涉及到AI基础技术的东西。其次,在标签基础上还有很多计算、组合的方式,涉及到后续的用户营销、用户生命周期管理等等问题。这里面就涉及到很多HR本身不懂的技术和方法的问题。如果仅仅把人才画像理解成打标和分类,这仅仅是万里长征的第一步。如果要做成数字化、系统化的产品和工具,数据仓库、业务架构、用户场景等等都需要深入思考,传统的HR是不善于此道的,这里面很需要产品经理去完成相关的设计工作。

人岗智能匹配的模式感兴趣的可以去查看一下百度开放平台AI智能招聘部分和讯飞开放平台智能招聘模块的内容,对于互联网公司的技术积累来说,这块似乎并不是什么太大的难题。整个技术模式可以有三步:

(1)第一步做简历解析和拆分,如果拿北森官网上的介绍来说:基于深度学习神经网络架构,通过增强NLP(自然语言处理)技术,从多种类的非结构简历文本中批量、快速、准确、稳定提取基本信息、技能、经历经验等信息,形成结构化数据,辅助简历筛选和人才洞察工作。(2)第二步做岗位描述解析,和第一步基本差不多的动作,也是做文本拆分和提取。(3)第三步做智能匹配,则是涉及到一些深度学习、神经网络等方面的匹配度、相似度算法,做人和岗位的综合相似和匹配判断。

也许有的人会说这个经验丰富的HR也能干,比如我这个岗位要求岗位本科以上学历、项目工作经验3年以上,那么问题来了有个项目工作经验3年、硕士学历,而另外一个是本科学历,项目工作经验4年,到底你选哪个?在传统的模式当中,整个就靠人的主观判定了,看看这两个人的工作地址、要求薪资等等。那么机器可以干到什么程度?可以把这些预设条件统统放到模型中去run,run出一个建议给到用人单位去参考。这可能就是AI的价值所在了。

在AI面试的形式当中,也主要区分两类,(1)一类是传统的结构化面试题目,由面试官提问改成机器提问STAR,然后系统记录作答者的内容,进行语音转文字,进行语义解析;(2)另一类是对话式的,虽然也是机器提问,但是整个过程会有相应的简单对话,也是系统记录做答内容,进行语音转换进行语义剖析。【备注:这里不谈论那种所谓的假AI,虽然是候选人面对机器系统,后端仍然有面试人存在;虽然是机器记录作答者内容,后续仍然是人工打分】

无论是上面的哪类,对人的评价要立足于评价什么,在这点儿上AI面试和传统面试并无太大的差别。(1)可炫技的部分可能是在语音、表情方面的识别上,会比人判断的更加精准和细致。如果十几年前你看过《lie to me》这部美剧,就知道人的微表情可以通过一些生理指标、动作变化指标进行捕捉,以此来判定个人是否撒谎。是的,这就是AI面试主打的宣传点,但实际上如何在面试的情境下捕捉那么多信息,以及当前这种微表情识别是否仅通过图像识别就能实现,在学术上都是一个值得商榷的地方。但不可否认的是,AI面试确实增加了一些传统面试无法捕捉的语音、表情方面的信息,例如通过这个人的整体表达,判定这个人是否亲和等(不要杠,我不否认有经验的面试官是可以做到的)。(2)对于语义方面的分析,虽然可以通过一些算法模式对人的逻辑思维、表达能力以及一些基本胜任能力要求做初步判断,但整体上这块的精准度还是存疑,因为涉及到太多的职场故事、专业知识和人际过程内容在里面了,要做这方面的深入处理,要建立非常庞大的底层规则和语库,目前的AI研究在这方面还远远不够。

测验开发是整个测评模式的基础,无论是纸笔测验还是其他形式的测评,怎么做好测评题本、开发好测评题目,这是一项“技术活”,也是很多测评师认为的核心竞争力,但遗憾的是市面上没有哪本书或者哪些文章对如何编写题本、设计问题进行专门的阐述,似乎这也成为了一门“玄学”,只有所谓的“资深测评师”拥有这项技能。如何将这种“核心竞争力”进行可复制性的推广和应用,减少玄学的成分以及促进测评生产效率的提升,将依靠人工主观重复造轮子的模式转换成机器按照规则需要进行题目自动生成,似乎是未来智能化测评的方向。在传统的命题领域,采用机器学习技术对人工命题的规律进行探索,从而能够实现自动化命题。

  • 初阶技术——项目模型法(构建一个题目原型,更改其中的某些属性特征)
  • 高阶技术——认知系统设计法(模拟人的认知过程,组合元素生成题目)

而其他方面如性格领域的测评,这些年也有一些突破,我记得2017年剑桥大学心理测量中心艾登·罗伊(Aiden Loe)博士在国内好几个高校都有讲过他使用机器学习算法自动生成人格测验题目的研究。

再次恕笔者的才疏学浅,目前也未见到相关的技术应用在商用领域,但实际上这方面的技术应用和突破是能够带来相应的商业价值,只不过可能会动了传统测评师的蛋糕。

游戏化测评是通过在线模拟游戏的形式,基本逻辑为在游戏过程中埋点抓取用户在完成任务过程中的动作,根据复杂的统计学算法进行分析。其发端可能在于教育测评领域的研究和应用,例如PISA就在合作学习主题的测评上使用该项技术,北森所谓的复杂问题解决方式测评PISA,也是借用了相关的技术来开发产品。

这里面的技术要点是(1)要有一个完整的游戏故事逻辑线,让被测者完全沉浸到里面进行操作;(2)在整个过程中进行关键行为埋点和数据抓取,而且这些数据之间是有关联关系的而不是独立无关的,这和传统的测验题目与题目之间基本独立的假设是相反的;(3)这些数据是要符合心理测量学指标要求的,如信效度等方面要经得起验证。因为一个游戏故事或者任务里面可进行数据埋点的地方非常多,所以一些所谓的类似于神经网络、机器学习的大数据处理方法显得更为重要,这实际上是游戏化测评的核心之一

但是游戏化测评步骤和报告样式与传统测评并无不同,其特点就在于形式新颖、行为点抓取数量多;至于行为点抓取后的算法是否运用到AI方面的技术很难判断。包括现在一些所谓的将传统的纸笔测验的方式运用动画、多媒体呈现也叫做游戏化测评,这个就不在本文的讨论范围之内了。

基于测评结果,进行后续相应的培训课程推送、文献推送以及相应的其他应用,应该是AI测评的最终价值呈现。

这里面最典型的可能是几年前美国大选中大五人格测评影响选民的态度和倾向的案例,这着实让心理学特别是人格心理学火了一把。相关报道可见:。这个案例表达的中心思想:不同性格的人对不同的信息处理有不同的而偏好,例如“神经质”得分较高的用户,会更多地使用"状态更新"这一功能来表达自我;而“宜人性”得分较高的用户喜欢在他人发布的内容中进行评论。有人把这种模式归纳为”一种人的搜索引擎“,目前抖音、美团等是否也利用了心理测验的结果,不得而知。

那么在人才测评领域是如何应用的呢?我可畅想的部分是人才测评服务厂商是否和培训机构、商业杂志网站进行合作,后台数据的共享,结合测评结果的情况进行文章推送、培训推荐以及定期的学习效果跟踪?对于大型企业的人力资源部来说,如何将员工入职简历、在职过程历练、培训发展的底层数据和信息打通,形成完整的数据价值链是一个关键问题。

目前这块,个人才疏学浅、见识浅薄,还未见到成功的商业案例和应用案例,如有读者有相应的情况了解,请评论区留言,AI在这块的应用,更偏互联网C端网站平台企业的运营思路,商业模式和传统的人才管理咨询公司有很大的差别。

主要集中在做测评环节的“面试”,而在建标准、做测评的题本开发、促应用(智能推送)方面做的较少

魔镜、vidAssess是典型的创业型科技公司率先开发推向市场,后被大企业收购的典型案例。

AI的优点:与传统相比——更加精准、节省二次维护和开发的成本。

AI固然有很多的优点和技术先进性,也正因为其门槛太高,很多传统HR并不了解其中到底哪些为真哪些为假,也有一些非AI的产品假冒AI之名进行招摇撞骗,必然需要有一定时间的市场筛选。

另外一方面,AI企业除了面临不成熟的市场外,实际上某种程度上是和传统的人才测评顾问抢饭碗,一些咨询顾问或者咨询公司会对AI技术嗤之以鼻,用一些AI固有的缺陷和不成熟的地方不断夸大其弱项,怎么平衡传统专业从业者的优势和AI的优势,这是AI企业必然面临的问题

本文地址:https://sicmodule.kub2b.com/quote/17567.html     企库往 https://sicmodule.kub2b.com/ , 查看更多

特别提示:本信息由相关用户自行提供,真实性未证实,仅供参考。请谨慎采用,风险自负。


0相关评论
相关最新动态
推荐最新动态
点击排行
网站首页  |  关于我们  |  联系方式  |  使用协议  |  版权隐私  |  网站地图  |  排名推广  |  广告服务  |  积分换礼  |  网站留言  |  RSS订阅  |  违规举报  |  鄂ICP备2020018471号