文章      动态     相关文章     最新文章     手机版动态     相关动态     |   首页|会员中心|保存桌面|手机浏览

5pv2g

https://sicmodule.kub2b.com/com5pv2g/

相关列表
文章列表
  • 暂无文章
推荐文章
开源一个RAG大模型本地知识库问答机器人-ChatWiki
发布时间:2025-01-31        浏览次数:0        返回列表

简介 准备工作再安装ChatWiki之前,您需要准备一台具有联网功能的linux服务器,并确保服务器满足最低系统要求• Cpu:最低需要2 Core• RAM:最低需要4GB开始安装ChatWiki社区版基于Docker部署,请先确保服务器已经安装好Docker。如果没有安装,可以通过以下命令安装

目前大模型非常火爆,很多企业一直想把大模型用在企业的客服中,但是基本上没有太多的成功案例。这个事情,我思考了下

1. 企业的客服服务是非常严谨的,不能乱回答。

比如在电商场景,用户说这个产品是否可以退款, 那大模型如果回答说可以。如果产品价格非常高,比如在1万以上,那么这个产品是不是要退款?损失谁来回答。 所以企业必须要机器人严格按照企业的知识库的要求来,不能乱回答

2.企业的资料的保密性

目前的大模型,当你把资料传给大模型的时候,实际上,你把资料也给机器人当做语料去训练机器人了,你的文档就是公开的文档了,这对许多企业来说,基本上不会把敏感资料传给大模型了

还记得之前网上报道过,三星把一个芯片资料传给大模型,导致敏感技术资料泄密的问题。

ChatGPT「奶奶漏洞」又火了,扮演过世祖母讲睡前故事,骗出Win11序列号

在这里插入图片描述

3 大模型从问答,到企业部署到自己的客服渠道,有大多的工作量

大模型提高了接口,提供了文字问答能力,但是,企业的客户咨询,是从

1 APP里

2 公司官网

3 公众号,小程序,视频号

4 抖音

5 小红书

6 微博

这么渠道,各个场景都要去覆盖,一般的企业根本就没这个开发实力。

基于这个想法,我就想做个基于大模型的问答机器人,完全打通小程序客服,微信公众号客服,视频号小店客服,H5APP客服,公司官网,部署简单。这样企业就很方便的部署起来。

我的想法是

**方法一:渠道统一管理, 把常用的渠道,全部默认支持到
**

在这里插入图片描述

方法二 :将企业知识库管理简单化

直接将doc,网址,pdf ,excel 直接上传到,就可以支持基于知识库的问答了。

在这里插入图片描述

上传的知识库,进行分段embedding操作

在这里插入图片描述

最后创建机器人,关联这个知识库,就可以对外提供服务了

在这里插入图片描述

以下是我们的架构图

在这里插入图片描述

下面是具体的一些介绍

ChatWiki是一款开源的知识库 AI 问答系统。系统基于大语言模型(LLM )和检索增强生成(RAG)技术构建,提供开箱即用的数据处理、模型调用等能力,可以帮助企业快速搭建自己的知识库 AI 问答系统。

能力


1、专属 AI 问答系统

通过导入企业已有知识构建知识库,让 AI 机器人使用关联的知识库回答问题,快速构建企业专属 AI 问答系统。

2、一键接入模型

ChatWiki已支持全球20多种主流模型,只需要简单配置模型API key等信息即可成功接入模型。

3、数据自动预处理

提供自动分段、QA分段、手动输入和 CSV 等多种方式导入数据,ChatWiki自动对导入的文本数据进行预处理、向量化或 QA 分割。

4、简单易用的使用方式

ChatWiki采用直观的可视化界面设计,通过简洁易懂的操作步骤,可以轻松完成 AI 问答机器人和知识库的创建。

5、适配不同业务场景

ChatWiki为 AI 问答机器人提供了不同的使用渠道,支持H5链接、嵌入网站、绑定到微信公众号或小程序、桌面客户端等,可以满足企业不同业务场景使用需求。

开始使用


准备工作

再安装ChatWiki之前,您需要准备一台具有联网功能的linux服务器,并确保服务器满足最低系统要求

  • Cpu:最低需要2 Core
  • RAM:最低需要4GB

开始安装

ChatWiki社区版基于Docker部署,请先确保服务器已经安装好Docker。如果没有安装,可以通过以下命令安装

 

安装好Docker后,逐步执行一下步骤安装ChatWiki社区版

(1).克隆或下载chatwiki项目代码

git clone https://github.com/zhimaAi/chatwiki.gitnewsbriefpoundbpress

(2).使用Docker Compose构建并启动项目

cd chatwiki/docker

docker compose up -d

部署手册

在安装和部署中有任何问题或者建议,可以联系我们获取帮助,也可以参考下面的文档。

  • 一键部署ChatWiki社区版
  • 如何配置模型供应商及支持的模型
  • 本地模型部署
  • 如何配置对外服务和接收推送的域名
  • 免Docker部署ChatWiki
  • 如何获取大模型ApiKey

界面


在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

技术架构


技术栈


  • 前端:vue.js

  • 后端:golang +python

  • 数据库:PostgreSQL16+pgvector+zhparser

  • 缓存:redis5.0

  • web服务:nginx

  • 异步队列:nsq

  • 进程管理:supervisor

  • 模型:支持OpenAI、Google Gemini、Claude3、通义千文、文心一言、讯飞星火、百川、腾讯混元等模型。

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “?”“”等问题热议不断。

事实上

继等巨头公司发布AI产品后,很多中小企业也陆续进场超高年薪,挖掘AI大模型人才 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗

与其焦虑……

不如成为「」,毕竟AI时代谁先尝试,谁就能占得先机

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 分享出来:包括等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击👈

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)

在这里插入图片描述

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/meta/chatglm/chatgpt

在这里插入图片描述

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 metaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 包括等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击👈