以前写的一个介绍simHash的。
1、分词,把需要判断文本分词形成这个文章的特征单词。最后形成去掉噪音词的单词序列并为每个词加上权重,我们假设权重分为5个级别(1~5)。比如:“ 美国“51区”雇员称内部有9架飞碟,曾看见灰色外星人 ” ==> 分词后为 “ 美国(4) 51区(5) 雇员(3) 称(1) 内部(2) 有(1) 9架(3) 飞碟(5) 曾(1) 看见(3) 灰色(4) 外星人(5)”,括号里是代表单词在整个句子里重要程度,数字越大越重要。
2、hash,通过hash算法把每个词变成hash值,比如“美国”通过hash算法计算为 100101,“51区”通过hash算法计算为 101011。这样我们的字符串就变成了一串串数字,还记得文章开头说过的吗,要把文章变为数字计算才能提高相似度计算性能,现在是降维过程进行时。
3、加权,通过 2步骤的hash生成结果,需要按照单词的权重形成加权数字串,比如“美国”的hash值为“100101”,通过加权计算为“4 -4 -4 4 -4 4”;“51区”的hash值为“101011”,通过加权计算为 “ 5 -5 5 -5 5 5”。
4、合并,把上面各个单词算出来的序列值累加,变成只有一个序列串。比如 “美国”的 “4 -4 -4 4 -4 4”,“51区”的 “ 5 -5 5 -5 5 5”, 把每一位进行累加, “4+5 -4+-5 -4+5 4+-5 -4+5 4+5” ==》 “9 -9 1 -1 1 9”。这里作为示例只算了两个单词的,真实计算需要把所有单词的序列串累加。
5、降维,把4步算出来的 “9 -9 1 -1 1 9” 变成 0 1 串,形成我们最终的simhash签名。 如果每一位大于0 记为 1,小于0 记为 0。最后算出结果为:“1 0 1 0 1 1”。
这个算法的几何意义非常明了。它首先将每一个特征映射为f维空间的一个向量,这个映射规则具体是怎样并不重要,只要对很多不同的特征来说,它们对所对应的向量是均匀随机分布的,并且对相同的特征来说对应的向量是唯一的就行。比如一个特征的4位hash签名的二进制表示为1010,那么这个特征对应的 4维向量就是(1, -1, 1, -1)T,即hash签名的某一位为1,映射到的向量的对应位就为1,否则为-1。然后,将一个文档中所包含的各个特征对应的向量加权求和,加权的系数等于该特征的权重。得到的和向量即表征了这个文档,我们可以用向量之间的夹角来衡量对应文档之间的相似度。最后,为了得到一个f位的签名,需要进一步将其压缩,如果和向量的某一维大于0,则最终签名的对应位为1,否则为0。这样的压缩相当于只留下了和向量所在的象限这个信息,而64位的签名可以表示多达264个象限,因此只保存所在象限的信息也足够表征一个文档了。
明确了算法了几何意义,使这个算法直观上看来是合理的。但是,为何最终得到的签名相近的程度,可以衡量原始文档的相似程度呢?这需要一个清晰的思路和证明。在simhash的发明人Charikar的论文中并没有给出具体的simhash算法和证明,以下列出我自己得出的证明思路。
Simhash是由随机超平面hash算法演变而来的,随机超平面hash算法非常简单,对于一个n维向量v,要得到一个f位的签名(f<<n),算法如下:
1,随机产生f个n维的向量r1,…rf;
2,对每一个向量ri,如果v与ri的点积大于0,则最终签名的第i位为1,否则为0.
这个算法相当于随机产生了f个n维超平面,每个超平面将向量v所在的空间一分为二,v在这个超平面上方则得到一个1,否则得到一个0,然后将得到的 f个0或1组合起来成为一个f维的签名。如果两个向量u, v的夹角为θ,则一个随机超平面将它们分开的概率为θ/π,因此u, v的签名的对应位不同的概率等于θ/π。所以,我们可以用两个向量的签名的不同的对应位的数量,即汉明距离,来衡量这两个向量的差异程度。
Simhash算法与随机超平面hash是怎么联系起来的呢?在simhash算法中,并没有直接产生用于分割空间的随机向量,而是间接产生的:第 k个特征的hash签名的第i位拿出来,如果为0,则改为-1,如果为1则不变,作为第i个随机向量的第k维。由于hash签名是f位的,因此这样能产生 f个随机向量,对应f个随机超平面。下面举个例子:
假设用5个特征w1,…,w5来表示所有文档,现要得到任意文档的一个3维签名。假设这5个特征对应的3维向量分别为:
h(w1) = (1, -1, 1)T
h(w2) = (-1, 1, 1)T
h(w3) = (1, -1, -1)T
h(w4) = (-1, -1, 1)T
h(w5) = (1, 1, -1)T
按simhash算法,要得到一个文档向量d=(w1=1, w2=2, w3=0, w4=3, w5=0) T的签名,
先要计算向量m = 1*h(w1) + 2*h(w2) + 0*h(w3) + 3*h(w4) + 0*h(w5) = (-4, -2, 6) T,然后根据simhash算法的步骤3,得到最终的签名s=001。上面的计算步骤其实相当于,先得到3个5维的向量,第1个向量由h(w1),…,h(w5)的第1维组成:r1=(1,-1,1,-1,1) T;第2个5维向量由h(w1),…,h(w5)的第2维组成:r2=(-1,1,-1,-1,1) T;同理,第3个5维向量为:r3=(1,1,-1,1,-1) T.按随机超平面算法的步骤2,分别求向量d与r1,r2,r3的点积:
d T r1=-4 < 0,所以s1=0;
d T r2=-2 < 0,所以s2=0;
d T r3=6 > 0,所以s3=1.
故最终的签名s=001,与simhash算法产生的结果是一致的。
从上面的计算过程可以看出,simhash算法其实与随机超平面hash算法是相同的,simhash算法得到的两个签名的汉明距离,可以用来衡量原始向量的夹角。这其实是一种降维技术,将高维的向量用较低维度的签名来表征。衡量两个内容相似度,需要计算汉明距离,这对给定签名查找相似内容的应用来说带来了一些计算上的困难;我想,是否存在更为理想的simhash算法,原始内容的差异度,可以直接由签名值的代数差来表示呢?
请先阅读有关图的基本知识,图的拉普拉斯矩阵分析以及谱聚类相关内容,谱哈希基于上述技术基础。
谱哈希对图像特征向量的编码过程可看做是图分割问题,借助于对相似图的拉普拉斯矩阵特征值和特征向量的分析可对图分割问题提供一个松弛解。由谱聚类可知,相似图拉普拉斯矩阵的特征向量实际上就是原始特征降维后的向量,但其并不是0-1的二值向量,可通过对特征向量进行阈值化产生spectral hashing的二值编码(The bits in spectral hashing are calculated by thresholding a subset of eigenvectors of Laplacians of the similar graph).
(1) each bit has 50% chance of being 0 or 1;
(2) the bits are independent of each other(always relaxed to uncorrelated).
因此,spectral hashing的编码过程可描述为下述的优化问题(为了求解问题的方便,将二值中的0表示为-1):
用Spectral 理论描述为:
Summarize the spectral hashing alogrithm:
Step1中PCA的主要作用是align the axes for data points, 也就是使数据点各维之间相互独立,符合seperate distribution;