热门推荐
电商搜索如何让你买得又快又好「搜索中」(三)
2024-12-26 03:27

搜索词充当了用户与搜索工具之间的重要沟通载体,借助关键词实现用户自我意识与搜索引擎之间的交流,形成了一个意识产生、关键词转化、搜索、信息获取、动机满足的信息闭环。

当然还有很多因素也会去影响这个闭环,如用户(历史行为,性别、年龄等)、地域、天气,一个宏观、长周期的链路等。

根据搜索的过程,可以拆解用户的搜索流程如下:搜索入口-搜索触发-内容输入-点击搜索-反馈结果。我们从这个流程的各个环节上来看四大电商app(京东、天猫、手淘、拼多多)的搜索功能,进行对比分析。

前文已经介绍了搜索前的一些产品及技术方案;本文还是电商搜索为例,以用户搜索过程中输入搜索词(点击“搜索“按钮到按下”回车“之间发生的事)的过程为切入点,结合产品及技术方案展开,结合相关搜索词功能进行论述。

关键词匹配/补全/联想/纠错的作用主要有三个:引导、纠错和高效。

用户在搜索框输入字符时,会在搜索框下面实时显示下拉提示词给用户,方便用户选择。可以帮助用户快速输入和优化搜索条件,且避免输入错误;在此基础上很多电商app也出现了筛选功能,在当前搜索建议词基础上进行扩展,进一步减少用户操作一般在用户搜索的不够具体,会推荐该搜索词更细的分类。淘宝的辅助多重筛选搜索,输入时展现的一系列联想内容,点击右边的一个拓展icon,就可以采用联想出的内容,在此基础上继续缩小范围筛选,从而帮助用户获得最接近需求的内容

通过当前实时输入的词去匹配候选词,一般查询频度和同查询词的历史查询记录重要参考依据

在搜索词补全和联想数量上,淘宝为10条,拼多多为10条,京东/天猫超过10条,但是不能过多,过多的选择会给用户造成记忆负担,并且占据空间,有损用户体验,所以需要控制数量以便信息不会过载

电商搜索如何让你买得又快又好「搜索中」(三)

当然部分电商在历史的版本迭代中会尝试在搜索输入阶段进行纠错,比如输入联衣群,下拉框中自动纠正为连衣裙的一些选项,目前四个电商app均并无此功能,而是在搜索结果展示内做纠错及提醒;自动容错功能,将极大地提升用户体验,并提升用户的购买率。

主旨:前缀匹配原则完整词未出现时一般使用补全/联想功能品类引导词为主;当出现明显品类词后开始出现更细粒度属性及标签筛选词。一般从query log中挖掘出大量候选query,并且保证前缀相同,然后根据某种计算模型给候选query 计算一个分数,最后按照分数选出topK作为最终结果。

主要考虑因素:当前搜索词,用户(性别、年龄等特征),日志中的群体智慧

极简版:

常见搜索引擎均带有suggestion功能,直接使用

统计版:

简单模型版:

在用户进行搜索商品时,通过用户与搜索词信息进行意图预测,并辅之以类目、性别预测前缀匹配后最终将某个性别和类目下的共现最高的topK热搜词作为搜索框下拉框提示词。

复杂模型版1:

通过语义、行为、session log等挖掘出query间相似分,并加入用户、搜索词、context类特征及其交叉特征。多维度相似融合再排序: 按照点击相似度、文本相似度、Session相似度衡量Query之间的相似度,得到候选的Pair(可选)交给重排序模块,对Query pair的优先级做优化,生成Top K的改写结果。

query2query召回

基于行为: item cf/swing、simrank++

基于session: word2vec、seq2seq

基于内容: query2vec(类似word2vec,构建query序列)

query排序

模型: LR/GBDT

样本: 用户日志,行为加权(展现:1,点击:5,购买:50)

特征: 搜索词的pv/ctr/cvr,用户是否活跃,用户画像/特征,用户+候选词(查询词/浏览详情页与热搜候选词相似度),context特征(地理位置,温度,天气等)

纠错

针对纠错,还可以做一个模型,但是上述query方式可以一定程度上避免了很多的输入有误问题。针对纠错可以考虑如下2种:

Non-word纠错(准备一个电商语料库字典,输入词不在整体字典中,即可以判定为错词)

Real-word纠错HMM(噪声信道模型,利用unigram+bigram+trigram,选择最优的token组合,Query pair,正确及错误词候选集合训练转移矩阵)

语义归一

针对候选词进行语义归一,一般将候选query相对搜索query的扩展部分进行相似度计算,以高于某个阈值后,只保留得分高的一个候选词,这样可以节省有限的坑位资源。

产品模块

清除的icon: 输入内容时,引导信息消失,有的还会伴随在搜索框中出现清除的icon,清除的icon主要方便用户进行二次搜索时一键清空当前信息,省去了逐字删除的麻烦;根据输入内容,进行关键词的匹配。

联想词下商品数量: 产品层面还可以做一个事情,就是将关键词对应的搜索结果数量前置,便于用户控制搜索词的颗粒度,也避免出现无结果或者少结果的情况,特别是针对相对稍长尾的搜索词而言。

后续文章主题:《国内主流电商搜索功能对比》、电商搜索-数据分析》、《搜索算法-QR》、《搜索算法-QU》、《搜索算法-相关性》《搜索算法-排序》。

前几篇文章:

对电商搜索感兴趣,并想深入了解算法的小伙伴,可参与我的live:

其它相关文章及live整理:

    以上就是本篇文章【电商搜索如何让你买得又快又好「搜索中」(三)】的全部内容了,欢迎阅览 ! 文章地址:https://sicmodule.kub2b.com/quote/13158.html 
     栏目首页      相关文章      动态      同类文章      热门文章      网站地图      返回首页 企库往资讯移动站https://sicmodule.kub2b.com/mobile/,查看更多   
发表评论
0评